test1

Plot XRD patterns from dpp files from PeakPo

  • Please check setup_for_notebooks file if you have problem using the notebooks in this folder.

Check the versio of pyFAI in your conda environment

In [1]:
import pyFAI
pyFAI.version
/Users/DanShim/anaconda/envs/peakpo7721/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
  from ._conv import register_converters as _register_converters
WARNING:pyFAI.opencl.common:Unable to import pyOpenCl. Please install it from: http://pypi.python.org/pypi/pyopencl
Out[1]:
'0.14.2'

Note that the example data files I provided are made with pyFAI version 0.14. If you see version higher than 0.15 here, you will get error when you read the example dpp file. In that case, you either follow the instruction in setup_for_notebooks.ipynb or you may use your own dpp for this note book.

Read dpp

In [2]:
import dill
import numpy as np

Change the following two cells for your own dpp file

Data files should be in the ./data folder. You need: dpp, chi, and tif.

In [4]:
%ls ./data/*.dpp
./data/hSiO2_404_009.dpp
In [5]:
filen_dpp = './data/hSiO2_404_009.dpp'
In [6]:
with open(filen_dpp, 'rb') as f:
    model_dpp = dill.load(f)

The cells below show how to look into the data structure of the model_dpp and get values from it.

In [7]:
model_dpp.__dict__
Out[7]:
{'diff_img': <ds_cake.DiffractionImage.DiffImg at 0x1119f2fd0>,
 'section_lst': [],
 'waterfall_ptn': [],
 'base_ptn': <ds_powdiff.DiffractionPattern.PatternPeakPo at 0x1a18f2f710>,
 'jcpds_path': '/Users/DanShim/Python/jcpds',
 'ucfit_lst': [],
 'poni': '/Users/DanShim/Python/PeakPo-v7/test_data/hstv-data/LaB6_37keV_p49_center.poni',
 'current_section': None,
 'chi_path': '/Users/DanShim/Python/PeakPo-v7/test_data/hstv-data',
 'saved_temperature': 300.0,
 'session': <ds_jcpds.jcpds.Session at 0x1a18f2fc88>,
 'saved_pressure': 39.6,
 'jcpds_lst': [<ds_jcpds.jcpds.JCPDSplt at 0x1a18f320b8>,
  <ds_jcpds.jcpds.JCPDSplt at 0x1a18f32e80>,
  <ds_jcpds.jcpds.JCPDSplt at 0x1a18f3c400>,
  <ds_jcpds.jcpds.JCPDSplt at 0x1a18f3c7b8>,
  <ds_jcpds.jcpds.JCPDSplt at 0x1a18f3c9b0>,
  <ds_jcpds.jcpds.JCPDSplt at 0x1a18f47588>,
  <ds_jcpds.jcpds.JCPDSplt at 0x1a18f47fd0>,
  <ds_jcpds.jcpds.JCPDSplt at 0x11256c860>]}
In [8]:
model_dpp.__dict__['diff_img'].__dict__
Out[8]:
{'intensity': None,
 'tth': None,
 'mask': array([[ True,  True,  True, ...,  True,  True,  True],
        [ True,  True,  True, ...,  True,  True,  True],
        [ True,  True,  True, ...,  True,  True,  True],
        ...,
        [ True,  True,  True, ...,  True,  True,  True],
        [ True,  True,  True, ...,  True,  True,  True],
        [ True,  True,  True, ...,  True,  True,  True]]),
 'chi_cake': array([-179.50000497, -178.50000494, -177.50000491, -176.50000488,
        -175.50000485, -174.50000483, -173.5000048 , -172.50000477,
        -171.50000474, -170.50000472, -169.50000469, -168.50000466,
        -167.50000463, -166.50000461, -165.50000458, -164.50000455,
        -163.50000452, -162.50000449, -161.50000447, -160.50000444,
        -159.50000441, -158.50000438, -157.50000436, -156.50000433,
        -155.5000043 , -154.50000427, -153.50000425, -152.50000422,
        -151.50000419, -150.50000416, -149.50000414, -148.50000411,
        -147.50000408, -146.50000405, -145.50000402, -144.500004  ,
        -143.50000397, -142.50000394, -141.50000391, -140.50000389,
        -139.50000386, -138.50000383, -137.5000038 , -136.50000378,
        -135.50000375, -134.50000372, -133.50000369, -132.50000367,
        -131.50000364, -130.50000361, -129.50000358, -128.50000355,
        -127.50000353, -126.5000035 , -125.50000347, -124.50000344,
        -123.50000342, -122.50000339, -121.50000336, -120.50000333,
        -119.50000331, -118.50000328, -117.50000325, -116.50000322,
        -115.50000319, -114.50000317, -113.50000314, -112.50000311,
        -111.50000308, -110.50000306, -109.50000303, -108.500003  ,
        -107.50000297, -106.50000295, -105.50000292, -104.50000289,
        -103.50000286, -102.50000284, -101.50000281, -100.50000278,
         -99.50000275,  -98.50000272,  -97.5000027 ,  -96.50000267,
         -95.50000264,  -94.50000261,  -93.50000259,  -92.50000256,
         -91.50000253,  -90.5000025 ,  -89.50000248,  -88.50000245,
         -87.50000242,  -86.50000239,  -85.50000237,  -84.50000234,
         -83.50000231,  -82.50000228,  -81.50000225,  -80.50000223,
         -79.5000022 ,  -78.50000217,  -77.50000214,  -76.50000212,
         -75.50000209,  -74.50000206,  -73.50000203,  -72.50000201,
         -71.50000198,  -70.50000195,  -69.50000192,  -68.50000189,
         -67.50000187,  -66.50000184,  -65.50000181,  -64.50000178,
         -63.50000176,  -62.50000173,  -61.5000017 ,  -60.50000167,
         -59.50000165,  -58.50000162,  -57.50000159,  -56.50000156,
         -55.50000154,  -54.50000151,  -53.50000148,  -52.50000145,
         -51.50000142,  -50.5000014 ,  -49.50000137,  -48.50000134,
         -47.50000131,  -46.50000129,  -45.50000126,  -44.50000123,
         -43.5000012 ,  -42.50000118,  -41.50000115,  -40.50000112,
         -39.50000109,  -38.50000106,  -37.50000104,  -36.50000101,
         -35.50000098,  -34.50000095,  -33.50000093,  -32.5000009 ,
         -31.50000087,  -30.50000084,  -29.50000082,  -28.50000079,
         -27.50000076,  -26.50000073,  -25.50000071,  -24.50000068,
         -23.50000065,  -22.50000062,  -21.50000059,  -20.50000057,
         -19.50000054,  -18.50000051,  -17.50000048,  -16.50000046,
         -15.50000043,  -14.5000004 ,  -13.50000037,  -12.50000035,
         -11.50000032,  -10.50000029,   -9.50000026,   -8.50000024,
          -7.50000021,   -6.50000018,   -5.50000015,   -4.50000012,
          -3.5000001 ,   -2.50000007,   -1.50000004,   -0.50000001,
           0.50000001,    1.50000004,    2.50000007,    3.5000001 ,
           4.50000012,    5.50000015,    6.50000018,    7.50000021,
           8.50000024,    9.50000026,   10.50000029,   11.50000032,
          12.50000035,   13.50000037,   14.5000004 ,   15.50000043,
          16.50000046,   17.50000048,   18.50000051,   19.50000054,
          20.50000057,   21.50000059,   22.50000062,   23.50000065,
          24.50000068,   25.50000071,   26.50000073,   27.50000076,
          28.50000079,   29.50000082,   30.50000084,   31.50000087,
          32.5000009 ,   33.50000093,   34.50000095,   35.50000098,
          36.50000101,   37.50000104,   38.50000106,   39.50000109,
          40.50000112,   41.50000115,   42.50000118,   43.5000012 ,
          44.50000123,   45.50000126,   46.50000129,   47.50000131,
          48.50000134,   49.50000137,   50.5000014 ,   51.50000142,
          52.50000145,   53.50000148,   54.50000151,   55.50000154,
          56.50000156,   57.50000159,   58.50000162,   59.50000165,
          60.50000167,   61.5000017 ,   62.50000173,   63.50000176,
          64.50000178,   65.50000181,   66.50000184,   67.50000187,
          68.50000189,   69.50000192,   70.50000195,   71.50000198,
          72.50000201,   73.50000203,   74.50000206,   75.50000209,
          76.50000212,   77.50000214,   78.50000217,   79.5000022 ,
          80.50000223,   81.50000225,   82.50000228,   83.50000231,
          84.50000234,   85.50000237,   86.50000239,   87.50000242,
          88.50000245,   89.50000248,   90.5000025 ,   91.50000253,
          92.50000256,   93.50000259,   94.50000261,   95.50000264,
          96.50000267,   97.5000027 ,   98.50000272,   99.50000275,
         100.50000278,  101.50000281,  102.50000284,  103.50000286,
         104.50000289,  105.50000292,  106.50000295,  107.50000297,
         108.500003  ,  109.50000303,  110.50000306,  111.50000308,
         112.50000311,  113.50000314,  114.50000317,  115.50000319,
         116.50000322,  117.50000325,  118.50000328,  119.50000331,
         120.50000333,  121.50000336,  122.50000339,  123.50000342,
         124.50000344,  125.50000347,  126.5000035 ,  127.50000353,
         128.50000355,  129.50000358,  130.50000361,  131.50000364,
         132.50000367,  133.50000369,  134.50000372,  135.50000375,
         136.50000378,  137.5000038 ,  138.50000383,  139.50000386,
         140.50000389,  141.50000391,  142.50000394,  143.50000397,
         144.500004  ,  145.50000402,  146.50000405,  147.50000408,
         148.50000411,  149.50000414,  150.50000416,  151.50000419,
         152.50000422,  153.50000425,  154.50000427,  155.5000043 ,
         156.50000433,  157.50000436,  158.50000438,  159.50000441,
         160.50000444,  161.50000447,  162.50000449,  163.50000452,
         164.50000455,  165.50000458,  166.50000461,  167.50000463,
         168.50000466,  169.50000469,  170.50000472,  171.50000474,
         172.50000477,  173.5000048 ,  174.50000483,  175.50000485,
         176.50000488,  177.50000491,  178.50000494,  179.50000497]),
 'img_filename': '/Users/DanShim/Python/PeakPo-v7/test_data/hstv-data/hSiO2_404_009.tif',
 'img': array([[0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        ...,
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0]], dtype=uint16),
 'intensity_cake': array([[130.00597, 130.00597, 130.00597, ...,   0.     ,   0.     ,
           0.     ],
        [130.00597, 130.00597, 130.00597, ...,   0.     ,   0.     ,
           0.     ],
        [130.00597, 130.00597, 130.00597, ...,   0.     ,   0.     ,
           0.     ],
        ...,
        [125.00542, 125.00542, 125.00542, ...,   0.     ,   0.     ,
           0.     ],
        [125.00542, 125.00542, 125.00542, ...,   0.     ,   0.     ,
           0.     ],
        [125.00542, 125.00542, 125.00542, ...,   0.     ,   0.     ,
           0.     ]], dtype=float32),
 'poni': Detector Detector	 Spline= None	 PixelSize= 7.900e-05, 7.900e-05 m
 Wavelength= 3.344000e-11m
 SampleDetDist= 1.961712e-01m	PONI= 8.153255e-02, 8.208488e-02m	rot1=0.004907  rot2= -0.002080  rot3= 0.000000 rad
 DirectBeamDist= 196.174mm	Center: x=1026.864, y=1026.893 pix	Tilt=0.305 deg  tiltPlanRotation= -157.031 deg,
 'tth_cake': array([2.60987346e-03, 7.82961977e-03, 1.30493661e-02, ...,
        3.03032372e+01, 3.03084569e+01, 3.03136767e+01])}

Setup a new PeakPo model and assign info from dpp

In [9]:
from model import PeakPoModel
model = PeakPoModel()

Make sure to reset the chi folder location using the new_chi_path option.

In [20]:
model.set_from(model_dpp, new_chi_path='./data/')

Some basic model methods

In [21]:
?model
Type:        PeakPoModel
String form: <model.model.PeakPoModel object at 0x112579be0>
File:        ~/Dropbox (ASU)/Python/jupyter4minphys/Demo_XRD_patterns_from_dpp/model/model.py
Docstring:  
session is only for reading/writing/referencing.
components of the models are not part of session.
session is a reference object
In [22]:
model.get_saved_pressure()
Out[22]:
39.6
In [23]:
model.get_saved_temperature()
Out[23]:
300.0
In [24]:
print(model.base_ptn.fname)
./data/hSiO2_404_009.chi
In [25]:
print(model.base_ptn.wavelength)
0.3344
In [26]:
print(model.waterfall_ptn)
[]
In [27]:
for phase in model.jcpds_lst:
    print(phase.name)
SiO2-hhstv
ar-NoTh
au
ne-NoTh
Dicvol_404_018Mono
Dicvol_404_003Mono
SiO2-NiAsBis
sio2-cacl2
In [28]:
for phase in model.jcpds_lst:
    if phase.display:
        print(phase.name)
SiO2-hhstv
au
ne-NoTh
sio2-cacl2
In [29]:
print(model.poni)
./data/LaB6_37keV_p49_center.poni

Make XRD plot

In [30]:
def dsp2tth(dsp, wavelength):
    return np.rad2deg( np.arcsin( wavelength / (2. * dsp) ) ) * 2.

def tth2dsp(tth, wavelength):
    return 0.5 * wavelength / np.sin( np.deg2rad(tth/2.) )
In [31]:
def plot_diffpattern(ax_pattern, model, xrange=None, yrange=None, bgsub=True,
                    no_yticks=True, dsp_ticks=False, dsp_step = 0.2):
    """
    ax_pattern = axis of diffraction pattern
    model = PeakPo model
    
    """
    wavelength = model.base_ptn.wavelength
    ax_pattern.set_ylabel('Intensity (arbitrary unit)')

    if no_yticks:
        ax_pattern.set_yticks([])
    if bgsub:
        x_data, y_data = model.base_ptn.get_bgsub()
    else:
        x_data, y_data = model.base_ptn.get_raw()
        
    if dsp_ticks and (xrange is not None):
        xrange[0] = dsp2tth(xrange[0], wavelength)
        xrange[1] = dsp2tth(xrange[1], wavelength)        
    
    if xrange is None:
        xrange = [x_data.min(), x_data.max()]
    if yrange is None:
        yrange = [y_data.min(), y_data.max()]
    x = np.ma.masked_where( (x_data <= xrange[0]) | (x_data >= xrange[1]), x_data )
    y = np.ma.masked_where( (x_data <= xrange[0]) | (x_data >= xrange[1]), y_data )
    ax_pattern.set_xlim(xrange)    
    ax_pattern.set_ylim(yrange)        
    ax_pattern.plot(x, y, c='k', lw=1.0)

    #if xrange is not None:
    #    ax_pattern.set_xlim(x.min(),x.max())

    if dsp_ticks:
        ticks = np.arange( np.floor( (dsp2tth(x, wavelength)*10.).max())/10.,
                          np.ceil( (dsp2tth(x, wavelength)*10.).min())/10.,-dsp_step)
        ticks_in_tth = dsp2tth(ticks, wavelength)
        ax_pattern.set_xticks(ticks_in_tth)
        ax_pattern.set_xticklabels(np.around(ticks, decimals=2))
        ax_pattern.set_xlabel('d-spacing ($\mathdefault{\AA}$)')
    else:
        ax_pattern.set_xlabel('Two Theta (degrees)')
In [32]:
def plot_jcpds(ax_pattern, model, 
               in_cake=False,
               show_index=False, show_legend=False,
               bar_height=1., bar_position=0., bar_vsep=0.,
              phase_names=None):
    """
    bar position: position of the bar base in fraction.  negative number will shift 
        bars further down
    """
    selected_phases = []
    for phase in model.jcpds_lst:
        if phase.display:
            selected_phases.append(phase)
    if phase_names is not None:
        if len(phase_names) != len(selected_phases):
            return
    else:
        phase_names = []
        for phase in selected_phases:
            phase_names.append(phase.name) 
            
    n_displayed_jcpds = len(selected_phases)
    axisrange = ax_pattern.axis()
    #bar_scale = 1. / 100. * axisrange[3] * bar_factor / 100.
    pressure = model.get_saved_pressure()
    temperature = model.get_saved_temperature()
    wavelength =  model.base_ptn.wavelength
    for i, phase in enumerate(selected_phases):
        phase.cal_dsp(pressure, temperature)
        tth, inten = phase.get_tthVSint(wavelength)
        intensity = inten * phase.twk_int
        starting_intensity = np.ones_like(tth) * axisrange[2] - \
            bar_position * (axisrange[3] - axisrange[2])
        bar_max = starting_intensity - \
            (i*bar_vsep) * 100. * (bar_height) / n_displayed_jcpds
        bar_min = starting_intensity - \
            (i*bar_vsep+1) * 100. * (bar_height) / n_displayed_jcpds
        if pressure == 0.:
            volume = phase.v
        else:
            volume = phase.v.item()
        ax_pattern.vlines(
            tth, bar_min, bar_max, colors=phase.color,
            label=phase_names[i],
            lw=1.0,
            alpha=1.0)
        # hkl
        if show_index:
            hkl_list = phase.get_hkl_in_text()
            for j, hkl in enumerate(hkl_list):
                if tth[j] >= axisrange[0] and tth[j] <= axisrange[1]:
                    ax_pattern.text(
                        tth[j], bar_max[j], hkl.replace(" ", ""), color=phase.color,
                        rotation=90, verticalalignment='bottom',
                        horizontalalignment='center',
                        fontsize=8.,
                        alpha=1.0)
        ax_pattern.text(
            axisrange[0] + (axisrange[1] - axisrange[0])*0.01, 
            (bar_max[0] + bar_min[0])/2., phase_names[i],
            color=phase.color,
            verticalalignment='center',
            horizontalalignment='left',
            fontsize=8.,
            alpha=1.0)
    ymin = axisrange[2] - bar_position * (axisrange[3] - axisrange[2]) - \
        ( (n_displayed_jcpds-1) * bar_vsep + 1) * 100. * bar_height / n_displayed_jcpds
    ax_pattern.set_ylim((ymin, axisrange[3]))

    if show_legend:
        leg_jcpds = ax_pattern.legend(
            loc=0, prop={'size': 10}, framealpha=0., handlelength=1)
        for line, txt in zip(leg_jcpds.get_lines(), leg_jcpds.get_texts()):
            txt.set_color(line.get_color())
In [33]:
import matplotlib.pyplot as plt
%config InlineBackend.figure_format = 'retina'
%matplotlib inline

f, ax = plt.subplots(figsize=(9,3.5), dpi=300)
plot_diffpattern(ax, model)
print(ax.axis())
plot_jcpds(ax, model, bar_position=0.1, bar_height=5, 
           show_index=True, 
           phase_names = ['hStv', 'Au', 'Ne', 'hCt'], bar_vsep=5.)
print(ax.axis())
pressure = model.get_saved_pressure()
temperature = model.get_saved_temperature()
ax.text(0.01,0.9, "(a) {0:.0f} GPa, {1: .0f} K".format(pressure, temperature), 
        transform = ax.transAxes, fontsize=16)
plt.savefig('test.pdf', bbox_inches='tight')
(6.0005517, 20.994111, -49.29726309993839, 2799.9014723947457)
(6.0005517, 20.994111, -2334.2171366494067, 2799.9014723947457)
In [ ]:
 
In [ ]:
 
In [ ]: